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ABSTRACT 
 
The rapid advances in Software Defined Radio technologies 
over the past decade encouraged their transition from lab to 
the field deployment, and shifted the usage from disparate 
communication devices to the creation of large resilient 
wireless networks capable of adapting to highly variable 
environment conditions in a cognitive manner. Simulation 
models capable of accurately representing the behavior and 
properties of SDR devices operating in a networked 
environment thus become a prerequisite for both the 
evaluation of such networks as well as for providing a 
development platform for creating new cognitive 
capabilities.   
This paper describes our work in creating a network 
simulation model framework for software defined radios 
that takes into account some of the unique behaviors and 
requirements of software defined radios not previously seen 
in purely hardware devices.  Factors such as large and 
variable communication delays between software modules, 
as well as continuous tuning and environment awareness 
functionality essential to SDR demand a different modeling 
approach as well as novel techniques that enable accurate 
scale testing. 
 
 

1. INTRODUCTION 
 
Software defined radios represent one of the major advances 
in the area of digital communication, promising to alleviate 
spectrum shortages by enabling agile frequency reuse, and 
providing a cost-effective way to implement multiple 
waveform capability using a single hardware platform.  One 
of the most attractive benefits of software defined radios is 
their ability to enable the creation of resilient wireless 
networks capable of adapting to highly variable 
environment conditions, and at the same time maintaining 
network transport capabilities in a cognitive manner. While 
the ultimate performance of the radio transceivers and their 
networking capabilities are evaluated through carefully 
designed field tests, highly detailed and accurate simulation 

models of such radios are essential for the creation and 
validation of cognitive algorithms capable of turning 
disparate radio terminals into a coherent network. 
Simulation models enable: i) thorough testing of the radio 
capabilities in situations not easily reproducible in field 
tests, ii) scalability of tests where large network studies are 
otherwise difficult to carry out as they would require a large 
number of radio equipment and a large amount of time, and 
iii) use of resources virtually, such as spectrum bands, 
instead of physically, without any administrative and 
regulatory constraint. 
 In this context, the creation of a simulation model 
capable of providing an experimentation platform for 
cognitive adaption functions under realistic load patterns 
and environmental conditions is both unique and 
challenging in several aspects. First, software defined radios 
may exhibit large communication delays between the 
software-defined link layer and the radio front end 
(hardware), a delay not present in hardware radios and often 
not accounted for in simulation models.  This delay, 
introduced in the software domain and dependent on the 
traffic load and software waveform configuration, prolongs 
the time needed to process packets and increases the time 
needed to sense and respond to the channel conditions. This 
significantly affects the performance of  radios in a shared 
environment.  Second, software defined radios are often 
highly configurable across a wide range of parameters, 
capable of dynamically changing their settings during 
operations in an independent, radio-by-radio manner. 
Traditional network models, with roots in hardware devices, 
do not enable such tunability and composability and thus 
limit their applicability with respect to developing cognitive 
adaptation strategies. And last, traditional network models 
were not tested with real application data feeds from live 
applications. However, the  software-in-the-loop simulation 
capability is crucial for testing and evaluating a software-
defined radio network using real applications to more 
accurately gauge the effect of complex cognitive algorithms 
for the software-defined radio networks. 
 This paper describes our work in creating a simulation 
model framework for software defined radios designed to 
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addresses these unique characteristics. The creation of such 
a model framework is challenging due to several factors. 
First, timing issues unique to the software-defined radios 
have not been fully considered in existing network 
simulation models.  While delays can be easily dealt with in 
general by reflecting them in event occurrence times, an 
accurate representation of communication timing requires a 
faithful representation of the software radio and the 
computational cost of its software functions.  
  Other aspects, such as the capability to satisfy arbitrary 
requests for information necessary to perform environment 
awareness functionality requires a new methodology for 
modeling to be both efficient, (i.e. not performing 
continuous computations,) and to accurately capture the 
effects of the computational delays. This becomes even 
more challenging when the parameters of individual radios 
can be changed dynamically, at runtime, rendering common 
modeling approaches such as global propagation tables 
unusable. 
 Finally, creating a model for simulator-in-the-loop in 
which simulations may have a long-term evolution required 
us to bring together a number of modeling techniques, such 
as obstacle modeling, interference modeling, and 
multichannel modeling, in a single simulation model using a 
dynamic control capability.  These independent pieces have 
to fit together to cooperate with one another during a single 
simulation run. 
 The simulation model framework described in this 
paper was built for ns-2 (Network Simulator,) a free, open-
source, and widely used network simulation platform. In 
regards to referent software defined radio, we used the GNU 
Radio [9], a free and open-source software development 
toolkit available under the GNU General Public License. 
The model framework was designed such that it can be 
easily applied to other software-defined radios. Our 
extensive software defined radio model consists of a MAC 
layer, a PHY layer, and a wireless channel.  The MAC layer 
includes a model for a channel coder which can be changed 
during runtime.  The new wireless channel model allows not 
only the PHY layer to operate on multiple channels, but also 
creates a new division of labor of modeling tasks in which 
errors, obstacles and distance-based power attenuation are 
handled in the channel rather than in the PHY layer, as in 
standard ns-2 wireless channel model. This new division of 
labor caused us to introduce a new modeling concept called 
“channel end-point” to handle spatially dependent 
computations. 
 This paper begins in Section 2 with an overview of our 
goals and the concrete devices modeled in our framework. 
Section 3 provides a comparison between a software defined 
radio architecture and a NS-2 simulation model, outlining 
the gaps and differences between the two. Section 3 then 
continues with a detailed description of the objects in our 
framework, indicating their interfaces and differences from 

the standard simulation models for hardware radios.  Section 
4 presents an evaluation of a GNU radio simulation model 
created using this framework, providing a parametric study 
of the model as well as fidelity and scalability data. We 
conclude the paper by discussing how the GNU Radio 
specific model could be adapted to model other software-
defined radios. 
 
2. SDR MODEL GOALS AND REFERENCE DEVICES 
 
The main goal of this work was to create a modeling 
framework capable of accommodating different instances of 
software defined radios. The models developed under this 
framework are intended to: a) evaluate the impact of 
different functions of the software defined radios with 
respect to the performance of the radios in a networked 
environment subject to realistic environmental conditions; 
and b) support the development and evaluation of different 
runtime adaptation strategies that require reconfigurations of 
different components of the radio, at individual nodes across 
the network.  
 The models developed under this framework were 
intended to be used as follows: 
a) as pure simulation deployment, where the network 

application and  control traffic are purely synthetic, and 
the adaptation algorithms are entirely abstracted as 
finite state machine simulation modules; 

b) as hybrid Software In The Loop (SITL) simulation 
deployment, where actual computer hosts are virtually 
attached to the simulation model (one per simulated 
node,) and can inject/receive real (IP) traffic into/from 
the simulation. In this usage mode, cognitive adaptation 
engines reside in the computer hosts where they 
observe and control the behavior of the simulated nodes 
during the course of the simulation. Details on SITL 
and hybrid deployments can be found in [1] and [2]. [3] 
also discuss how to perform network management 
functions in such a network. 

The initial model developed under this framework was a 
model of a multi-channel GNU-based packet radio used for 
platform communication in tactical ad-hoc networks, with 
models of other Software Defined Radio waveforms such as 
WIN-T LAW and SRW soon to follow. The description in 
this paper is limited to the GNU radio model. 
GNU Radio is a popular, open source software radio 
platform operating on a general purpose processor (GPP,) 
capable of offering an unprecedented level of re-
configurability using common and accessible programming 
languages and paradigms. As such, it offers an ideal 
platform for developing cognitive algorithms where re-
configurability goes significantly beyond a choice of a few 
presets. We used USRP II as the front-end hardware for the 
GNU Radio model, using a configuration more precisely 
described in [8] and [10]. 
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The SDR Modeling Framework was created using the ns-2 
network simulator, where various existing simulated 
functions such as the link layer and wireless channel could 
be easily adapted to an SDR framework, due to the 
permissive license and open-source nature. 

Figure 1 shows a side-by-side comparison between the 
components of a GNU Radio, and the components of the 
NS-2 SDR framework. A GNU Radio, depicted in the left 
hand side, consists of a MAC layer module which handles 
packets from a TAP interface and transmits them via the 
GNU Radio framer.  Frames are subsequently encoded and 
the set of symbols are then sent to the USRP radio frontend 
through an Ethernet connection. On the receiving path, the 
symbols received from the USRP frontend are passed up to 
the GNU radio software where several smaller channels are 
separated from a single set of channels.  Once frames are 
decoded, they are sent to the application through the 
network TAP interface.   
 The right hand side of Figure 1 shows the 
corresponding modules in the ns-2 SDR Framework. The 
blue boxes represent the  modules existing in the original 
ns-2 wireless framework; the orange boxes represent the ns-
2 components that were modified to incorporate SDR 
functionality; the  purple boxes represent the components 
that we added to the framework; and finally the green box 
(routing) represents a component that already existed, but 

was not integrated in a wireless ns-2 model, and thus it 
needed to be integrated into the framework. 

 
3. MODELING FRAMEWORK 

 
The right-hand side of Figure 1 shows the main components 
of the ns-2 SDR Framework. Applications (either traffic 
producers/consumers or SDR cognitive engines) can be 
either simulated applications, ns-2 models, or real 
applications executing in their virtual machines. At the top, 
the framework provides a software in the loop (SITL) 
injection layer, where a virtual machine can be attached to 
the SDR simulated model.  This layer accepts packets from 
a virtual machine and injects them into the model at the 
appropriate node. Next, a stock ns-2 IP layer block and Link 
Layer block handles the IP and link layer functionality and 
provides routing protocol interactions, (noting here that ns-2 
separates the MAC layer from the link layer).  An SDR 
Framework MAC layer sits below the IP Link Layer 
module.  The MAC layer creates transmission frames and 
schedules transmissions. Besides, it interacts with the coder 
for modeling interleaving and error correction, and also with 
the physical layer for carrier sensing functionality.  The 
physical layer module handles the simulation of 
communication delays in an SDR, and the delays between 
the software modules and the physical front-end in an SDR 

GNU	  Radio	  Components SDR	  Model	  Framework

Application

Linux	  TCP/IP	  
Stack

GNU	  Radio	  MAC	  
Layer

GNU	  Radio	  Framer
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Virtual	  Machine	  /	  Application

SITL	  Injection	  Layer

Link	  Layer	  /	  Other	  IP	  
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Phy Layer
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Wireless	  Environment

Reconfiguration	  
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Figure 1 GNU Radio components vs. NS-2 node framework 
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device. The physical layer sits above the wireless channel 
module.  The wireless channel interacts with an error model, 
obstacle model and interference model to simulate the 
behavior of a real wireless environment.  Finally, a 
reconfiguration module interacts with all other modules in 
order to change the functionality of the other modules 
(either at the parameter level or by entirely swapping a 
module) at runtime, and also collects parameter states in the 
other modules to provide a standard interface for SDR state 
observation. 
 Before diving into the details of each of the modules 
and their SDR specific functionality, a few remarks are 
made here. First, while models exist for ns-2 for most of the 
functionality described herein, much of it was designed for a 
very narrow scope, i.e. specific hardware devices, and was 
never fully integrated into ns-2.  One shortcoming of the 
existing wireless model in ns-2 is that some of the modeled 
objects carry out tasks they would not actually carry out in 
the real world.  As an example, one might expect to find 
code related to error modeling in the wireless channel code, 
however for the 802.11 model, error modeling is done in the 
physical layer code.  This is done for reasons that will be 
explained later. This, however, required us to rework some 
of these interfaces. Thus, a significant portion of our effort 
was to re-design and modify components to provide a 
framework that would incorporate all of the features 
previously described at once.  Furthermore, since many of 
the features had to be reconfigurable at runtime, as in an 
actual SDR radio with cognitive capabilities, we had to 
design interfaces and re-design some of the modules to 
support capability not provided in a typical network 
simulation.  The remainder of this section describes each 
component of the model in detail. 
 
3.1 The MAC Module 
 
This module is responsible for simulating the media access 
control functionality (MAC) in the Software Defined Radio.  
Since the MAC functionality can be significantly different 
for different radios, we will not cover the specifics of the 
MAC layer, but will instead focus on the interfaces to the 
upper and lower layers. 
 On the transmitting side packets are received from the 
interface queue (a standard ns-2 object mirroring driver 
queues in network interfaces).  The MAC module then 
decides whether and when it is ready to transmit, possibly 
by asking the PHY module for carrier signal strength 
detection. It may then loop by rescheduling the packet for 
transmission until it is ready to transmit (either by carrier 
sense detection as in CSMA, or slot interval as in TDMA), 
but should eventually either drop the packet (if it cannot 
transmit) or forward the packet to the PHY module. Before 
transmission, the MAC module emulates the computation 
responsible for frame formation. After the MAC frame is 

computed, the packet is also passed to the Coder module for 
specific error correction encoding and interleaving (if 
deemed to exist in the referent system), as well as channel 
coding. To support multichannel radio designs, the MAC 
module is also responsible for setting the transmission 
frequency of the PHY module before handing off the 
packet. The MAC module then informs the interface queue 
that it will be ready to access the next packet after the 
current packet is transmitted.  
 On the receiving path, upon receiving a coded frame 
from the PHY module, the MAC module first decides 
whether the MAC object is ready to receive a packet 
(computationally, and in the right state) or drop the packet. 
Subsequently, the MAC module schedules the decoding of 
the packet in iterative stages.  At each stage, the Coder 
module decodes a portion of the packet and verifies that it 
had been decoded successfully, and drops the packet if any 
decoding error occurs.  Also, the access code is checked for 
errors in a specialized routine, reflecting whether the access 
code is protected or not by channel coding. For modeling 
multi-channel SDRs, the MAC module also maintains per-
channel state information (i.e. multiple packets being 
received simultaneously.)  The MAC module is also 
responsible for registering with the MultiChannel module 
about the channels (frequencies) on which it wishes to 
listen.  
 The MAC module is responsible for modeling certain 
delays specific to SDR devices, usually not encountered in 
hardware devices, and normally not present in network 
simulator models: 
• Computation and buffering delays encountered as a 

result of digital signal processing 
• Computational and buffering delays encountered as 

result of carrier sensing 
While the existence of processing delays is expected in a 
Software Defined Radio, their effect in multi-channel 
settings and at high data rates must be modeled to take into 
account the computational capability of the modeled 
processors. Least expected are the effects of computational 
delays and data buffering for carrier sensing. These delays, 
ranging anywhere from micro-seconds to hundreds of 
milliseconds, may have a large impact on carrier sense 
based MAC and derived protocols since they provide a false 
view of the channel state. This means that by the time the 
channel is sensed to be free by the MAC protocol, another 
radio may already have occupied the channel and the 
resulting transmission will cause a collision, significantly 
reducing the performance of the radio. 
 The MAC module provides a large number of 
parameters which can be changed at runtime.  These include 
CSMA specific parameters (such as back off limits, post 
transmission yield times, carrier sense threshold, etc.) as 
well as less specific parameters that may be modified at 
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runtime, such as  the number of channels, channel width and 
spacing, data rates, etc. 
 
3.2 The Coder Module 
 
This module simulates the encoding and decoding of 
packets with error-correcting codes [4] [6].  A special 
dummy coder object is provided to simulate a radio without 
channel coding functionality (direct translation of source 
bits to symbols).  . 
 The Coder module is highly configurable object that 
can be configured with a different coder number, block 
length, coding rate, and coding data.  The coding data is a 
set of points on the curve representing the input error rate 
versus output error rate for the code that needs to be 
modeled.  The coder performs linear interpolation between 
these points, and an error rate prior to the first point is 
assumed to always result in a proper decoding, while an 
error rate after the last point is assumed to always result in a 
decoding error. 
 When encoding a packet, the encoder stores the coder 
type in the meta-header of the packet.  (This header is a 
simulation construct that does not contribute to the 
simulated transmission time of the packet.)  It also 
transforms the size of the packet to reflect the encoding ratio 
and possible padding. 
 To decode a packet, the decoder first checks whether 
the coder type is correct assuming that decoding would not 
succeed if the wrong coder was used.  It then restores the 
original size of the packet for the higher layer objects.  
Finally it checks the error header to determine the errors and 
their distribution accumulated during transmission.  Based 
on the number of errors, it computes the input error rate and 
looks up the corresponding output error rate. It then 
randomly generates the number of output errors using a 
Bernoulli distribution.  If the number of output errors is 
greater than zero, the coder determines that the packet was 
uncorrectable; otherwise it returns that the packet was 
corrected. For the dummy coder, its encoder portion simply 
marks the packet as un-encoded.  The decoder portion of the 
dummy coder checks the error header of the packet and 
returns an uncorrectable error if any errors are present. 
 The Coder module is also responsible for modeling the 
computational and buffering details introduced by various 
coding schemes (stream- or block- oriented.)  
 Implementation-wise, different channel coders can be 
active in a simulation at the same time, each initialized with 
different coding data. This mechanism allows for the 
channel coder to be easily changed at runtime by simply 
loading another set of coding data.  This is important since 
many cognitive radios actually have multiple channel 
coding algorithms and adapt to the wireless environment.  
 
 

3.3 The PHY Module 
 
This module simulates the behavior of the software-defined 
radio front end (the hardware portion of the radio,) as well 
as its communication path between the front end and 
processor. As is the case of an SDR, this is a thin module 
that acts as the go-between the MAC module and the 
Wireless Channel module.  This module is responsible for 
computing the delays in transmission, receive, and observed 
signal strength (carrier sense functionality) paths, caused by 
the digital communication path between the radio fron end 
and the processor. 
 On the sending side, the PHY module requests the 
MultiChannel object associated with the current 
transmission frequency and width from the Wireless 
Channel module, and it forwards the packet to the channel.  
On the receiving side, it schedules the packet to be received 
by the MAC module after a certain communication delay, 
and adds the packet to the received packet list.  This 
received packet list allows the PHY module to compute the 
signal strength detected on the channel. The communication 
delay is also used for adding the packet to the receiving 
packet list and removing the packet from the list. This delay, 
similar to the one discussed in the previous section, 
simulates the fact that the real software always receives 
dated information from the hardware. In the case of the 
GNU Radio and USRP combination, the delay is due to the 
Ethernet connection between the processor computer and 
the USRP.  Even with low level driver communication, 
buffers on either side of the connection create small but 
non-negligible communication delays between the software 
and the hardware.   
 The PHY module contains a number of reconfigurable 
parameters.  The bits per symbol, samples per symbol, and 
sample frequency, etc., can be changed at runtime.  
Similarly, the communication delay between the hardware 
and the software, transmission power, radio system loss 
factor, and transmission frequency can also be changed at 
runtime. 
 
3.4 The Wireless Channel and ChannelEndPoint 
Modules 
 
The Wireless Channel module simulates the behavior of a 
wireless channel.  A global instance of this object maintains 
a list of the currently simulated channels.  It provides an 
interface to start and stop listening to a channel. For 
performance reasons and in order to support dynamic 
behavior, the Wireless module creates a channel lazily, 
when the first listener requests it and destroys the channel 
when the last listener stops listening. 
 The Wireless Channel module has an associated 
frequency, width and noise floor and maintains a list of 
listening PHY modules. On the downstream side, it 
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connects to the Error and Propagation Modules.  The list of 
listening PHY instances are connected each through a 
unique ChannelEndPoint instance.  This is necessary since 
the channel itself exists everywhere and errors and 
propagation delays are dependent on location.  These 
ChannelEndPoint instances represent the channel at the 
location of the associated PHY instance. 
 On the sending side, the Wireless Channel module first 
records information (location, transmission power, node id) 
of the sending node.  It duplicates the packet (over the air 
receipt) and schedules it to be received by each 
ChannelEndPoint module instance after the appropriate 
propagation time.   
 In order to support large scale scenarios, the Wireless 
Channel module has an optimized implementation that uses 
a distance table to selectively forward the packet to 
receivers in a fixed range of the sender.  Another important 
modeling detail is that the sender receives its own packet 
from the channel: this is to provide accurate modeling of 
signal strength at the receiver, self interference effects in a 
full duplex mode, as well as the possibility of modeling 
STAR (simultaneous transmit and receive) for a device as 
well as for cognitive tuning of the noise-level thresholds. 
 The ChannelEndPoint module deals with the reception 
of packets in the channel.  Upon receiving a packet, this 
module uses the sender information in the packet header and 
the receiver information associated with the 
ChannelEndPoint to compute the received signal strength.  
It then adds the received signal strength to the current 
sensed signal strength at the ChannelEndPoint and adds the 
packet to the receiving packet list to later remove the 
packets signal strength from the sensed signal strength.  
This is a separate list from the PHY module instances 
packet list and is used by the Error module to get the 
instantaneous signal power.  It also updates the error 
information for all other packets being received on the 
channel to indicate that a signal change has occurred.  
Finally, it forwards the packet to the PHY modules to be 
further processed. 
 
3.5 The Error Module 
 
This module simulates the introduction of errors into a 
packet as a result of channel conditions.  The current model 
has just a single function, called poi (an acronym for point 
of interest) which is called whenever the channel conditions 
change for a particular packet.  When called on a packet, it 
computes the signal to noise ratio for the packet (note that at 
this point the packet has been duplicated and is specific to a 
particular receiving PHY module instance.) It then 
computes the number of received symbols since the last 
point of interest and uses the previously recorded signal to 
noise ratio to compute the number of errors introduced in 
that interval, as well as record other properties of interest for 

the signal for the given interval.  The number of errors is a 
randomly generated number based on a Bernoulli 
distribution clamped between zero and the number of 
symbols transmitted in the interval with a mean of: 
 

symbols * 0.5 * erfc(sqrt(sinr)) 
 

This calculation simulates the number of errors introduced 
by a binary symmetric channel with hard decision decoding.  
Note the separation between channel coding functionality 
and the error module, faithfully representing the separation 
of concept existing in real SDRs. 
 
 
3.6 The Reconfiguration Module 
 
The reconfiguration module enables a separate application 
to reconfiguration simulation parameters for a given 
simulated SDR node, or monitor simulation statistics, i.e. 
observable parameters, while the simulator is running. The 
goal of this module is to offer support for executing a 
cognitive engines that is capable of observing and adapting 
the behavior of the simulated SDR node. As previously 
mentioned, these applications can be either real applications, 
deployed in VMs associated with the simulation through 
SITL technology, or simulated applications modeled as part 
of the simulation. 
 The Reconfiguration module interacts with all the other 
modules in the NS-2 SDR framework, setting and collecting 
their properties, and providing formal interfaces for 
accessing the information. Currently there are two basic 
interfaces:  

i) an interface allows an application to issue TCL 
commands to NS-2’s TCL interpreter as if executed 
in a script.  This works since the modified NS-2 
objects support runtime configuration and statistic 
collection via a TCL command interface.   

ii)  a second reconfiguration interface allows a  (VM 
deployed) application to issue formal SNMP requests 
(get and set) to the VMs which are then transformed , 
delayed, rescheduled, and redirected to the other 
modules in the framework.simulator by appending 
the node id to the request.  The response is then sent 
back to the VM. 

The interfaces to the reconfiguration module are one of the 
most important contributions to the NS-2 SDR framework, 
since they enable testing and development of cognitive 
adaptation algorithms for SDRs. Note that such 
functionality is not available in standard network models for 
two reasons. First, hardware radios are assumed to be 
uniform throughout a network, thus parameters affecting 
their behavior are generally configured and modified 
globally, not on a per node basis. Our framework provides 
local parameters that are changed or read by co-located 
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software. Second, in simulation models, parameters are 
commonly assumed to be constant for the duration of a 
simulation: accordingly, also configurable, such parameters 
are fixed per each simulation run, therefore not changeable 
on demand by adaptation engines. Our framework provides 
a safe mechanism for changing and reading parameters in an 
asynchronous manner, and taking into account the access 
cycle provided in a referent SDR device. 
 
 

4. EVALUATION RESULTS 
 
4.1. SDR Model Framework Parameter Study 
 
In order to demonstrate the necessity of properly modeling 
key features of a referent SDR radio in the proposed NS-2 
SDR Framework, this section shows how the model 
behavior changes with respect to these parameters.  In the 
first experiment we vary the packet size of the CBR traffic 

in the simulated network and measure its effect on both bit 
error rate and packet error rate.  In the second experiment 
we show how the packet error rate changes with respect to 
the average channel noise level.  In the final experiment for 
this section we show how the packet collision rate is 
affected by changes to the communication delay between 
the hardware and software layers of the SDR model. 
 In our first experiment we created an 8-node simulation 
generating CBR traffic at an average rate of ten packets per 
second between each pair of nodes.  The bit error rate was 
set to 120kbps and the ECC used was BCH 21/31+1 parity 
[5].  All other parameters are according to measured values 
from the actual SDR testbed.  Measurements are from the 
perspective of a single node and the results are shown in 
Figure 2.  As we increased the size of the packets we notice 
that the error rate in bits per second increases approaching a 
limit of the channel capacity.  Considering the very noisy 
conditions of this experiment, this is the expected behavior. 

 
 
Figure 4 Hardware and software communication 
delay vs. packet collision rate for GNU Radio Model 

 
 
Figure 2 Packet size vs. bit error rate for the GNU 
Radio Model 

 
 
Figure 3 Packet size vs. packet error rate for the 
GNU Radio Model 

 
 
Figure 5 Average channel noise level vs. packet 
error rate for the GNU Radio Model 
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 Figure 3 shows the error rate measured in packets per 
second, in the same settings as above.  The results shown in 
Figure 3 are similar to the first experiment except that we 
initially see no errors at the packet level as the error 
correction code was able to correct all the packets at these 
smaller sizes (simulated error correction BCH 21/31). 
 An important modeling factor that the NS-2 SDR 
framework emphasizes is the sensitivity of the performance 
of the SDR radio to inherent processing, buffering, and 
communication delays. This experiment demonstrates the 
sensitivity of the model to adjusting the aggregate hardware 
and software communication delay.  For this experiment we 
varied this delay and measured the collision rate.  The 
results shown in Figure 4 demonstrate an interesting 
behavior.  It seems that there exists some threshold below 
which the communicate delay between the hardware and 

software has a negligible effect on the collision rate but 
above which the collision rate becomes non-negligible.  
This clearly demonstrates the need for properly modeling 
such delays. 
 
 
4.2. Framework Fidelity 
 
While it is not our goal to prove that the GNU Radio model 
developed under the NS-2 SDR framework perfectly models 
our GNU Radio/USRP software hardware combo, in this 
section we show some results indicating that the model is to 
the extent measured consistent with reality.  We performed 
three tests: i) in the first we studied the behavior of a single 
uni-directional traffic flow; ii) in the second we studied the 
behavior of a single bi-directional traffic flow; and iii) in the 

 
 
Figure 6 Attempted bandwidth vs. achieved bandwidth for a single uni-directional traffic flow on an GNU 
Radio/USRPII network and its equivalent simulation model. 

 
 
Figure 7 Attempted bandwidth vs. achieved 
bandwidth for a single bi-directional traffic flow on 
a GNU Radio net and its equivalent simulation 
model 

 
 
Figure 8 Attempted bandwidth vs. achieved 
bandwidth for multiple simultaneous traffic flows on 
a GNU Radio net and its equivalent simulation model 
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final test we studied the behavior of multiple simultaneous 
traffic flows. In all tests we compared the behavior of both 
the NS-2 SDR model and the GNU Radio/USRPII combo.  
 In the first experiment we selected a pair of neighboring 
nodes: we set one node to be a receiver and the other a 
sender for 'iperf' traffic.  We throttled the bandwidth from 
5kbps to 70 kbps in 5kbps increments and then performed a 
final run at 120kbps.  The radios and their model had a 
120kbps channel bit rate and used a BCH 21/31+1 parity 
error correcting code.  As seen in Figure 6 both the actual 
GNU Radio/USRPII as well as its NS-2 SDR model 
achieved the desired bandwidth until they reached a limit of 
approximately 60kbps.  This is consistent with the actual 
settings of a 2/3 coding rate and additional overhead due to 
various protocols in the stack. 
 The second experiment used a similar setting and 
similar rates as above, except the flows were established in 
both directions over the selected link.  In Figure 7 we show 
that the combined bandwidth achieved on the two flows is 
approximately the same as the achieved bandwidth in the 
first fidelity experiment.  More importantly the simulation 
results are very close to the results observed in the actual 
GNU Radio/USRP II. 
 In the final fidelity experiment we set up three traffic 
flows between three nodes.  One link had a bi-directional 
traffic flow and the other two links had a uni-directional 
traffic flow.  For this experiment we measured the 
maximum and minimum flow rates achieved in the network. 
While the link which had the greatest flow throughput and 
the least flow throughput varied from run to run, the overall 
behavior remained the same: one link had a dominant 
throughput and the remaining links suffered. Figure 8 shows 
that the throughput of the flows increased until reaching a 
maximum with a desired throughput of 20kbps per flow 
then dropped off quickly.  This is the result of collision 
caused by the competition for the channel in the presence of 

the previously mentioned delays in sensing the carrier. More 
importantly, it can be observed that the simulation results 
match fairly well the results obtained from the GNU 
Radio/USRPII radios, validating our approach where 
various delays between functional blocks need to be taken 
into account and faithfully represented. 
 
4.3. Scalability 
 
Scaling an SDR network using actual devices can be both 
costly and time consuming.  Such networks are difficult to 
maintain and even more difficult to perform controlled 
experiments on. Therefore, a simulation framework as 
provided by the NS-2 SDR framework is of utmost 
importance in understanding the behavior of these networks 
at greater scales than easily achievable with actual SDR 
devices. 
 The importance of a scalable framework is even more 
poignant in the case of an SDR network model, due to the 
extra-detailed modeling of various delays occurring in an 
SDR radio, as well as the re-configurability requirements for 
cognitive functions. Therefore, we have to apply several 
techniques aimed at speeding up the model at large scales. 
First, we created a distance map of each pair of nodes and 
maintained a sorted list of node distances from each nodes 
perspective.  While this was not a new concept, we made 
several improvements by using hash tables and exploiting 
redundancies in calculating distances between nodes.  
Second, we took advantage of the fact that the NS-2 
simulator updates the node movement information in a bulk 
operation, and we only sorted the distance table once upon 
node creation or periodically when all node positions were 
updated in a particular bulk operation. 
 In our experiments we created a single subnet within a 
200 meter radius with fully connected radios and constant 
bit rate (CBR) traffic between all pairs of nodes.  Figure 9 

 
 
Figure 9 Number of simulated nodes vs. wall clock 
execution time for a GNU Radio Model simulation 

 
 
Figure 10 Number of simulated nodes vs. wall clock 
execution time for a GNU Radio Model simulation 
with optimization for large scenarios 
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shows the relationship between the number of simulation 
nodes and the wall clock execution time of an 1800 second 
simulation.  It is important to note that the fully connected 
traffic graph meant that the traffic grows as a square of the 
number of nodes therefore we see a quadratic growth in the 
simulation time.  
 The optimization results can be seen in Figure 10.  For 
this experiment we deployed the nodes in a sparse network, 
where the spacing between nodes grows in proportion to 
their number.  The optimized channel thus forwards packets 
only to nodes which are within interference range of the 
transmitting nodes.  Each test performed 600 seconds of 
simulation time with a full mesh of CBR traffic flows 
transmitting one packet every ten seconds.  Even with this 
extremely heavy network load, we see that the simulator 
performed large scale tests in nearly linear time with 
relation to the number of nodes.  
 Although the execution of large scale simulation 
scenarios may shows a simulation speed that may be smaller 
than real time, this does not invalidate our objective of 
executing real application and cognitive algorithms tuning 
the behavior of each modeled SDR device in real time. This 
is due to the Time Synch functionality [11], that allows the 
execution of entire virtual machines, including the software 
deployed on them, at a speed closely synchronized to that of 
a simulator, where VAN SITL technology is employed. 
 

 
5. CONCLUSIONS 

 
This paper presented the NS-2 SDR Framework, a 
framework written for the NS-2 simulator designed to 
facilitate the modeling of the networks consisting of SDR 
devices. Salient features of our framework are a detailed and 
explicit modeling of time delays in the most important 
processes encountered in a software defined radio, including 
but not limited to channel coding, digital transformations, 
carrier sense, as well as communication and buffering 
delays encountered between the software and hardware 
domains. Additionally, a reconfiguration framework was 
provided, an essential component of any SDR radio capable 
of providing runtime adaptation in a cognitive manner. 
 To best of our knowledge, this is the first framework 
that successfully provided both these capabilities, promoting 

further development and validation of cognitive strategies, 
in a high fidelity environment. 
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