

A SOFTWARE DEFINED RADIO MODELING FRAMEWORK FOR

ENABLING COGNITIVE APPLICATION

Angelo Sapello (University of Delaware, Newark, DE, USA); Constantin Serban
(Applied Communication Sciences, Basking Ridge, NJ, USA); Adarsh Sethi (University
of Delaware, Newark, DE, USA); C. Jason Chiang (Applied Communication Sciences,

Basking Ridge, NJ, USA); Kimberly Moeltner (CERDEC, Aberdeen, MD, USA)

ABSTRACT

The rapid advances in Software Defined Radio technologies
over the past decade encouraged their transition from lab to
the field deployment, and shifted the usage from disparate
communication devices to the creation of large resilient
wireless networks capable of adapting to highly variable
environment conditions in a cognitive manner. Simulation
models capable of accurately representing the behavior and
properties of SDR devices operating in a networked
environment thus become a prerequisite for both the
evaluation of such networks as well as for providing a
development platform for creating new cognitive
capabilities.
This paper describes our work in creating a network
simulation model framework for software defined radios
that takes into account some of the unique behaviors and
requirements of software defined radios not previously seen
in purely hardware devices. Factors such as large and
variable communication delays between software modules,
as well as continuous tuning and environment awareness
functionality essential to SDR demand a different modeling
approach as well as novel techniques that enable accurate
scale testing.

1. INTRODUCTION

Software defined radios represent one of the major advances
in the area of digital communication, promising to alleviate
spectrum shortages by enabling agile frequency reuse, and
providing a cost-effective way to implement multiple
waveform capability using a single hardware platform. One
of the most attractive benefits of software defined radios is
their ability to enable the creation of resilient wireless
networks capable of adapting to highly variable
environment conditions, and at the same time maintaining
network transport capabilities in a cognitive manner. While
the ultimate performance of the radio transceivers and their
networking capabilities are evaluated through carefully
designed field tests, highly detailed and accurate simulation

models of such radios are essential for the creation and
validation of cognitive algorithms capable of turning
disparate radio terminals into a coherent network.
Simulation models enable: i) thorough testing of the radio
capabilities in situations not easily reproducible in field
tests, ii) scalability of tests where large network studies are
otherwise difficult to carry out as they would require a large
number of radio equipment and a large amount of time, and
iii) use of resources virtually, such as spectrum bands,
instead of physically, without any administrative and
regulatory constraint.
 In this context, the creation of a simulation model
capable of providing an experimentation platform for
cognitive adaption functions under realistic load patterns
and environmental conditions is both unique and
challenging in several aspects. First, software defined radios
may exhibit large communication delays between the
software-defined link layer and the radio front end
(hardware), a delay not present in hardware radios and often
not accounted for in simulation models. This delay,
introduced in the software domain and dependent on the
traffic load and software waveform configuration, prolongs
the time needed to process packets and increases the time
needed to sense and respond to the channel conditions. This
significantly affects the performance of radios in a shared
environment. Second, software defined radios are often
highly configurable across a wide range of parameters,
capable of dynamically changing their settings during
operations in an independent, radio-by-radio manner.
Traditional network models, with roots in hardware devices,
do not enable such tunability and composability and thus
limit their applicability with respect to developing cognitive
adaptation strategies. And last, traditional network models
were not tested with real application data feeds from live
applications. However, the software-in-the-loop simulation
capability is crucial for testing and evaluating a software-
defined radio network using real applications to more
accurately gauge the effect of complex cognitive algorithms
for the software-defined radio networks.
 This paper describes our work in creating a simulation
model framework for software defined radios designed to

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

312

addresses these unique characteristics. The creation of such
a model framework is challenging due to several factors.
First, timing issues unique to the software-defined radios
have not been fully considered in existing network
simulation models. While delays can be easily dealt with in
general by reflecting them in event occurrence times, an
accurate representation of communication timing requires a
faithful representation of the software radio and the
computational cost of its software functions.
 Other aspects, such as the capability to satisfy arbitrary
requests for information necessary to perform environment
awareness functionality requires a new methodology for
modeling to be both efficient, (i.e. not performing
continuous computations,) and to accurately capture the
effects of the computational delays. This becomes even
more challenging when the parameters of individual radios
can be changed dynamically, at runtime, rendering common
modeling approaches such as global propagation tables
unusable.
 Finally, creating a model for simulator-in-the-loop in
which simulations may have a long-term evolution required
us to bring together a number of modeling techniques, such
as obstacle modeling, interference modeling, and
multichannel modeling, in a single simulation model using a
dynamic control capability. These independent pieces have
to fit together to cooperate with one another during a single
simulation run.
 The simulation model framework described in this
paper was built for ns-2 (Network Simulator,) a free, open-
source, and widely used network simulation platform. In
regards to referent software defined radio, we used the GNU
Radio [9], a free and open-source software development
toolkit available under the GNU General Public License.
The model framework was designed such that it can be
easily applied to other software-defined radios. Our
extensive software defined radio model consists of a MAC
layer, a PHY layer, and a wireless channel. The MAC layer
includes a model for a channel coder which can be changed
during runtime. The new wireless channel model allows not
only the PHY layer to operate on multiple channels, but also
creates a new division of labor of modeling tasks in which
errors, obstacles and distance-based power attenuation are
handled in the channel rather than in the PHY layer, as in
standard ns-2 wireless channel model. This new division of
labor caused us to introduce a new modeling concept called
“channel end-point” to handle spatially dependent
computations.
 This paper begins in Section 2 with an overview of our
goals and the concrete devices modeled in our framework.
Section 3 provides a comparison between a software defined
radio architecture and a NS-2 simulation model, outlining
the gaps and differences between the two. Section 3 then
continues with a detailed description of the objects in our
framework, indicating their interfaces and differences from

the standard simulation models for hardware radios. Section
4 presents an evaluation of a GNU radio simulation model
created using this framework, providing a parametric study
of the model as well as fidelity and scalability data. We
conclude the paper by discussing how the GNU Radio
specific model could be adapted to model other software-
defined radios.

2. SDR MODEL GOALS AND REFERENCE DEVICES

The main goal of this work was to create a modeling
framework capable of accommodating different instances of
software defined radios. The models developed under this
framework are intended to: a) evaluate the impact of
different functions of the software defined radios with
respect to the performance of the radios in a networked
environment subject to realistic environmental conditions;
and b) support the development and evaluation of different
runtime adaptation strategies that require reconfigurations of
different components of the radio, at individual nodes across
the network.
 The models developed under this framework were
intended to be used as follows:
a) as pure simulation deployment, where the network

application and control traffic are purely synthetic, and
the adaptation algorithms are entirely abstracted as
finite state machine simulation modules;

b) as hybrid Software In The Loop (SITL) simulation
deployment, where actual computer hosts are virtually
attached to the simulation model (one per simulated
node,) and can inject/receive real (IP) traffic into/from
the simulation. In this usage mode, cognitive adaptation
engines reside in the computer hosts where they
observe and control the behavior of the simulated nodes
during the course of the simulation. Details on SITL
and hybrid deployments can be found in [1] and [2]. [3]
also discuss how to perform network management
functions in such a network.

The initial model developed under this framework was a
model of a multi-channel GNU-based packet radio used for
platform communication in tactical ad-hoc networks, with
models of other Software Defined Radio waveforms such as
WIN-T LAW and SRW soon to follow. The description in
this paper is limited to the GNU radio model.
GNU Radio is a popular, open source software radio
platform operating on a general purpose processor (GPP,)
capable of offering an unprecedented level of re-
configurability using common and accessible programming
languages and paradigms. As such, it offers an ideal
platform for developing cognitive algorithms where re-
configurability goes significantly beyond a choice of a few
presets. We used USRP II as the front-end hardware for the
GNU Radio model, using a configuration more precisely
described in [8] and [10].

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

313

The SDR Modeling Framework was created using the ns-2
network simulator, where various existing simulated
functions such as the link layer and wireless channel could
be easily adapted to an SDR framework, due to the
permissive license and open-source nature.

Figure 1 shows a side-by-side comparison between the
components of a GNU Radio, and the components of the
NS-2 SDR framework. A GNU Radio, depicted in the left
hand side, consists of a MAC layer module which handles
packets from a TAP interface and transmits them via the
GNU Radio framer. Frames are subsequently encoded and
the set of symbols are then sent to the USRP radio frontend
through an Ethernet connection. On the receiving path, the
symbols received from the USRP frontend are passed up to
the GNU radio software where several smaller channels are
separated from a single set of channels. Once frames are
decoded, they are sent to the application through the
network TAP interface.
 The right hand side of Figure 1 shows the
corresponding modules in the ns-2 SDR Framework. The
blue boxes represent the modules existing in the original
ns-2 wireless framework; the orange boxes represent the ns-
2 components that were modified to incorporate SDR
functionality; the purple boxes represent the components
that we added to the framework; and finally the green box
(routing) represents a component that already existed, but

was not integrated in a wireless ns-2 model, and thus it
needed to be integrated into the framework.

3. MODELING FRAMEWORK

The right-hand side of Figure 1 shows the main components
of the ns-2 SDR Framework. Applications (either traffic
producers/consumers or SDR cognitive engines) can be
either simulated applications, ns-2 models, or real
applications executing in their virtual machines. At the top,
the framework provides a software in the loop (SITL)
injection layer, where a virtual machine can be attached to
the SDR simulated model. This layer accepts packets from
a virtual machine and injects them into the model at the
appropriate node. Next, a stock ns-2 IP layer block and Link
Layer block handles the IP and link layer functionality and
provides routing protocol interactions, (noting here that ns-2
separates the MAC layer from the link layer). An SDR
Framework MAC layer sits below the IP Link Layer
module. The MAC layer creates transmission frames and
schedules transmissions. Besides, it interacts with the coder
for modeling interleaving and error correction, and also with
the physical layer for carrier sensing functionality. The
physical layer module handles the simulation of
communication delays in an SDR, and the delays between
the software modules and the physical front-end in an SDR

GNU	 Radio	 Components SDR	 Model	 Framework

Application

Linux	 TCP/IP	
Stack

GNU	 Radio	 MAC	
Layer

GNU	 Radio	 Framer

USRP	 Radio

BCH	 Coder

Virtual	 Machine	 /	 Application

SITL	 Injection	 Layer

Link	 Layer	 /	 Other	 IP	
Functionality OLSR	 RoutingOLSR	 Agent

MAC	 Layer Coder

Phy Layer

Channel	 End	 Point

Wireless	 Channel
Error,	 Obstacle,	
Interference	 	

Model

Wireless	 Environment

Reconfiguration	
Module

Figure 1 GNU Radio components vs. NS-2 node framework

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

314

device. The physical layer sits above the wireless channel
module. The wireless channel interacts with an error model,
obstacle model and interference model to simulate the
behavior of a real wireless environment. Finally, a
reconfiguration module interacts with all other modules in
order to change the functionality of the other modules
(either at the parameter level or by entirely swapping a
module) at runtime, and also collects parameter states in the
other modules to provide a standard interface for SDR state
observation.
 Before diving into the details of each of the modules
and their SDR specific functionality, a few remarks are
made here. First, while models exist for ns-2 for most of the
functionality described herein, much of it was designed for a
very narrow scope, i.e. specific hardware devices, and was
never fully integrated into ns-2. One shortcoming of the
existing wireless model in ns-2 is that some of the modeled
objects carry out tasks they would not actually carry out in
the real world. As an example, one might expect to find
code related to error modeling in the wireless channel code,
however for the 802.11 model, error modeling is done in the
physical layer code. This is done for reasons that will be
explained later. This, however, required us to rework some
of these interfaces. Thus, a significant portion of our effort
was to re-design and modify components to provide a
framework that would incorporate all of the features
previously described at once. Furthermore, since many of
the features had to be reconfigurable at runtime, as in an
actual SDR radio with cognitive capabilities, we had to
design interfaces and re-design some of the modules to
support capability not provided in a typical network
simulation. The remainder of this section describes each
component of the model in detail.

3.1 The MAC Module

This module is responsible for simulating the media access
control functionality (MAC) in the Software Defined Radio.
Since the MAC functionality can be significantly different
for different radios, we will not cover the specifics of the
MAC layer, but will instead focus on the interfaces to the
upper and lower layers.
 On the transmitting side packets are received from the
interface queue (a standard ns-2 object mirroring driver
queues in network interfaces). The MAC module then
decides whether and when it is ready to transmit, possibly
by asking the PHY module for carrier signal strength
detection. It may then loop by rescheduling the packet for
transmission until it is ready to transmit (either by carrier
sense detection as in CSMA, or slot interval as in TDMA),
but should eventually either drop the packet (if it cannot
transmit) or forward the packet to the PHY module. Before
transmission, the MAC module emulates the computation
responsible for frame formation. After the MAC frame is

computed, the packet is also passed to the Coder module for
specific error correction encoding and interleaving (if
deemed to exist in the referent system), as well as channel
coding. To support multichannel radio designs, the MAC
module is also responsible for setting the transmission
frequency of the PHY module before handing off the
packet. The MAC module then informs the interface queue
that it will be ready to access the next packet after the
current packet is transmitted.
 On the receiving path, upon receiving a coded frame
from the PHY module, the MAC module first decides
whether the MAC object is ready to receive a packet
(computationally, and in the right state) or drop the packet.
Subsequently, the MAC module schedules the decoding of
the packet in iterative stages. At each stage, the Coder
module decodes a portion of the packet and verifies that it
had been decoded successfully, and drops the packet if any
decoding error occurs. Also, the access code is checked for
errors in a specialized routine, reflecting whether the access
code is protected or not by channel coding. For modeling
multi-channel SDRs, the MAC module also maintains per-
channel state information (i.e. multiple packets being
received simultaneously.) The MAC module is also
responsible for registering with the MultiChannel module
about the channels (frequencies) on which it wishes to
listen.
 The MAC module is responsible for modeling certain
delays specific to SDR devices, usually not encountered in
hardware devices, and normally not present in network
simulator models:
• Computation and buffering delays encountered as a

result of digital signal processing
• Computational and buffering delays encountered as

result of carrier sensing
While the existence of processing delays is expected in a
Software Defined Radio, their effect in multi-channel
settings and at high data rates must be modeled to take into
account the computational capability of the modeled
processors. Least expected are the effects of computational
delays and data buffering for carrier sensing. These delays,
ranging anywhere from micro-seconds to hundreds of
milliseconds, may have a large impact on carrier sense
based MAC and derived protocols since they provide a false
view of the channel state. This means that by the time the
channel is sensed to be free by the MAC protocol, another
radio may already have occupied the channel and the
resulting transmission will cause a collision, significantly
reducing the performance of the radio.
 The MAC module provides a large number of
parameters which can be changed at runtime. These include
CSMA specific parameters (such as back off limits, post
transmission yield times, carrier sense threshold, etc.) as
well as less specific parameters that may be modified at

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

315

runtime, such as the number of channels, channel width and
spacing, data rates, etc.

3.2 The Coder Module

This module simulates the encoding and decoding of
packets with error-correcting codes [4] [6]. A special
dummy coder object is provided to simulate a radio without
channel coding functionality (direct translation of source
bits to symbols). .
 The Coder module is highly configurable object that
can be configured with a different coder number, block
length, coding rate, and coding data. The coding data is a
set of points on the curve representing the input error rate
versus output error rate for the code that needs to be
modeled. The coder performs linear interpolation between
these points, and an error rate prior to the first point is
assumed to always result in a proper decoding, while an
error rate after the last point is assumed to always result in a
decoding error.
 When encoding a packet, the encoder stores the coder
type in the meta-header of the packet. (This header is a
simulation construct that does not contribute to the
simulated transmission time of the packet.) It also
transforms the size of the packet to reflect the encoding ratio
and possible padding.
 To decode a packet, the decoder first checks whether
the coder type is correct assuming that decoding would not
succeed if the wrong coder was used. It then restores the
original size of the packet for the higher layer objects.
Finally it checks the error header to determine the errors and
their distribution accumulated during transmission. Based
on the number of errors, it computes the input error rate and
looks up the corresponding output error rate. It then
randomly generates the number of output errors using a
Bernoulli distribution. If the number of output errors is
greater than zero, the coder determines that the packet was
uncorrectable; otherwise it returns that the packet was
corrected. For the dummy coder, its encoder portion simply
marks the packet as un-encoded. The decoder portion of the
dummy coder checks the error header of the packet and
returns an uncorrectable error if any errors are present.
 The Coder module is also responsible for modeling the
computational and buffering details introduced by various
coding schemes (stream- or block- oriented.)
 Implementation-wise, different channel coders can be
active in a simulation at the same time, each initialized with
different coding data. This mechanism allows for the
channel coder to be easily changed at runtime by simply
loading another set of coding data. This is important since
many cognitive radios actually have multiple channel
coding algorithms and adapt to the wireless environment.

3.3 The PHY Module

This module simulates the behavior of the software-defined
radio front end (the hardware portion of the radio,) as well
as its communication path between the front end and
processor. As is the case of an SDR, this is a thin module
that acts as the go-between the MAC module and the
Wireless Channel module. This module is responsible for
computing the delays in transmission, receive, and observed
signal strength (carrier sense functionality) paths, caused by
the digital communication path between the radio fron end
and the processor.
 On the sending side, the PHY module requests the
MultiChannel object associated with the current
transmission frequency and width from the Wireless
Channel module, and it forwards the packet to the channel.
On the receiving side, it schedules the packet to be received
by the MAC module after a certain communication delay,
and adds the packet to the received packet list. This
received packet list allows the PHY module to compute the
signal strength detected on the channel. The communication
delay is also used for adding the packet to the receiving
packet list and removing the packet from the list. This delay,
similar to the one discussed in the previous section,
simulates the fact that the real software always receives
dated information from the hardware. In the case of the
GNU Radio and USRP combination, the delay is due to the
Ethernet connection between the processor computer and
the USRP. Even with low level driver communication,
buffers on either side of the connection create small but
non-negligible communication delays between the software
and the hardware.
 The PHY module contains a number of reconfigurable
parameters. The bits per symbol, samples per symbol, and
sample frequency, etc., can be changed at runtime.
Similarly, the communication delay between the hardware
and the software, transmission power, radio system loss
factor, and transmission frequency can also be changed at
runtime.

3.4 The Wireless Channel and ChannelEndPoint
Modules

The Wireless Channel module simulates the behavior of a
wireless channel. A global instance of this object maintains
a list of the currently simulated channels. It provides an
interface to start and stop listening to a channel. For
performance reasons and in order to support dynamic
behavior, the Wireless module creates a channel lazily,
when the first listener requests it and destroys the channel
when the last listener stops listening.
 The Wireless Channel module has an associated
frequency, width and noise floor and maintains a list of
listening PHY modules. On the downstream side, it

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

316

connects to the Error and Propagation Modules. The list of
listening PHY instances are connected each through a
unique ChannelEndPoint instance. This is necessary since
the channel itself exists everywhere and errors and
propagation delays are dependent on location. These
ChannelEndPoint instances represent the channel at the
location of the associated PHY instance.
 On the sending side, the Wireless Channel module first
records information (location, transmission power, node id)
of the sending node. It duplicates the packet (over the air
receipt) and schedules it to be received by each
ChannelEndPoint module instance after the appropriate
propagation time.
 In order to support large scale scenarios, the Wireless
Channel module has an optimized implementation that uses
a distance table to selectively forward the packet to
receivers in a fixed range of the sender. Another important
modeling detail is that the sender receives its own packet
from the channel: this is to provide accurate modeling of
signal strength at the receiver, self interference effects in a
full duplex mode, as well as the possibility of modeling
STAR (simultaneous transmit and receive) for a device as
well as for cognitive tuning of the noise-level thresholds.
 The ChannelEndPoint module deals with the reception
of packets in the channel. Upon receiving a packet, this
module uses the sender information in the packet header and
the receiver information associated with the
ChannelEndPoint to compute the received signal strength.
It then adds the received signal strength to the current
sensed signal strength at the ChannelEndPoint and adds the
packet to the receiving packet list to later remove the
packets signal strength from the sensed signal strength.
This is a separate list from the PHY module instances
packet list and is used by the Error module to get the
instantaneous signal power. It also updates the error
information for all other packets being received on the
channel to indicate that a signal change has occurred.
Finally, it forwards the packet to the PHY modules to be
further processed.

3.5 The Error Module

This module simulates the introduction of errors into a
packet as a result of channel conditions. The current model
has just a single function, called poi (an acronym for point
of interest) which is called whenever the channel conditions
change for a particular packet. When called on a packet, it
computes the signal to noise ratio for the packet (note that at
this point the packet has been duplicated and is specific to a
particular receiving PHY module instance.) It then
computes the number of received symbols since the last
point of interest and uses the previously recorded signal to
noise ratio to compute the number of errors introduced in
that interval, as well as record other properties of interest for

the signal for the given interval. The number of errors is a
randomly generated number based on a Bernoulli
distribution clamped between zero and the number of
symbols transmitted in the interval with a mean of:

symbols * 0.5 * erfc(sqrt(sinr))

This calculation simulates the number of errors introduced
by a binary symmetric channel with hard decision decoding.
Note the separation between channel coding functionality
and the error module, faithfully representing the separation
of concept existing in real SDRs.

3.6 The Reconfiguration Module

The reconfiguration module enables a separate application
to reconfiguration simulation parameters for a given
simulated SDR node, or monitor simulation statistics, i.e.
observable parameters, while the simulator is running. The
goal of this module is to offer support for executing a
cognitive engines that is capable of observing and adapting
the behavior of the simulated SDR node. As previously
mentioned, these applications can be either real applications,
deployed in VMs associated with the simulation through
SITL technology, or simulated applications modeled as part
of the simulation.
 The Reconfiguration module interacts with all the other
modules in the NS-2 SDR framework, setting and collecting
their properties, and providing formal interfaces for
accessing the information. Currently there are two basic
interfaces:

i) an interface allows an application to issue TCL
commands to NS-2’s TCL interpreter as if executed
in a script. This works since the modified NS-2
objects support runtime configuration and statistic
collection via a TCL command interface.

ii) a second reconfiguration interface allows a (VM
deployed) application to issue formal SNMP requests
(get and set) to the VMs which are then transformed ,
delayed, rescheduled, and redirected to the other
modules in the framework.simulator by appending
the node id to the request. The response is then sent
back to the VM.

The interfaces to the reconfiguration module are one of the
most important contributions to the NS-2 SDR framework,
since they enable testing and development of cognitive
adaptation algorithms for SDRs. Note that such
functionality is not available in standard network models for
two reasons. First, hardware radios are assumed to be
uniform throughout a network, thus parameters affecting
their behavior are generally configured and modified
globally, not on a per node basis. Our framework provides
local parameters that are changed or read by co-located

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

317

software. Second, in simulation models, parameters are
commonly assumed to be constant for the duration of a
simulation: accordingly, also configurable, such parameters
are fixed per each simulation run, therefore not changeable
on demand by adaptation engines. Our framework provides
a safe mechanism for changing and reading parameters in an
asynchronous manner, and taking into account the access
cycle provided in a referent SDR device.

4. EVALUATION RESULTS

4.1. SDR Model Framework Parameter Study

In order to demonstrate the necessity of properly modeling
key features of a referent SDR radio in the proposed NS-2
SDR Framework, this section shows how the model
behavior changes with respect to these parameters. In the
first experiment we vary the packet size of the CBR traffic

in the simulated network and measure its effect on both bit
error rate and packet error rate. In the second experiment
we show how the packet error rate changes with respect to
the average channel noise level. In the final experiment for
this section we show how the packet collision rate is
affected by changes to the communication delay between
the hardware and software layers of the SDR model.
 In our first experiment we created an 8-node simulation
generating CBR traffic at an average rate of ten packets per
second between each pair of nodes. The bit error rate was
set to 120kbps and the ECC used was BCH 21/31+1 parity
[5]. All other parameters are according to measured values
from the actual SDR testbed. Measurements are from the
perspective of a single node and the results are shown in
Figure 2. As we increased the size of the packets we notice
that the error rate in bits per second increases approaching a
limit of the channel capacity. Considering the very noisy
conditions of this experiment, this is the expected behavior.

Figure 4 Hardware and software communication
delay vs. packet collision rate for GNU Radio Model

Figure 2 Packet size vs. bit error rate for the GNU
Radio Model

Figure 3 Packet size vs. packet error rate for the
GNU Radio Model

Figure 5 Average channel noise level vs. packet
error rate for the GNU Radio Model

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

318

 Figure 3 shows the error rate measured in packets per
second, in the same settings as above. The results shown in
Figure 3 are similar to the first experiment except that we
initially see no errors at the packet level as the error
correction code was able to correct all the packets at these
smaller sizes (simulated error correction BCH 21/31).
 An important modeling factor that the NS-2 SDR
framework emphasizes is the sensitivity of the performance
of the SDR radio to inherent processing, buffering, and
communication delays. This experiment demonstrates the
sensitivity of the model to adjusting the aggregate hardware
and software communication delay. For this experiment we
varied this delay and measured the collision rate. The
results shown in Figure 4 demonstrate an interesting
behavior. It seems that there exists some threshold below
which the communicate delay between the hardware and

software has a negligible effect on the collision rate but
above which the collision rate becomes non-negligible.
This clearly demonstrates the need for properly modeling
such delays.

4.2. Framework Fidelity

While it is not our goal to prove that the GNU Radio model
developed under the NS-2 SDR framework perfectly models
our GNU Radio/USRP software hardware combo, in this
section we show some results indicating that the model is to
the extent measured consistent with reality. We performed
three tests: i) in the first we studied the behavior of a single
uni-directional traffic flow; ii) in the second we studied the
behavior of a single bi-directional traffic flow; and iii) in the

Figure 6 Attempted bandwidth vs. achieved bandwidth for a single uni-directional traffic flow on an GNU
Radio/USRPII network and its equivalent simulation model.

Figure 7 Attempted bandwidth vs. achieved
bandwidth for a single bi-directional traffic flow on
a GNU Radio net and its equivalent simulation
model

Figure 8 Attempted bandwidth vs. achieved
bandwidth for multiple simultaneous traffic flows on
a GNU Radio net and its equivalent simulation model

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

319

final test we studied the behavior of multiple simultaneous
traffic flows. In all tests we compared the behavior of both
the NS-2 SDR model and the GNU Radio/USRPII combo.
 In the first experiment we selected a pair of neighboring
nodes: we set one node to be a receiver and the other a
sender for 'iperf' traffic. We throttled the bandwidth from
5kbps to 70 kbps in 5kbps increments and then performed a
final run at 120kbps. The radios and their model had a
120kbps channel bit rate and used a BCH 21/31+1 parity
error correcting code. As seen in Figure 6 both the actual
GNU Radio/USRPII as well as its NS-2 SDR model
achieved the desired bandwidth until they reached a limit of
approximately 60kbps. This is consistent with the actual
settings of a 2/3 coding rate and additional overhead due to
various protocols in the stack.
 The second experiment used a similar setting and
similar rates as above, except the flows were established in
both directions over the selected link. In Figure 7 we show
that the combined bandwidth achieved on the two flows is
approximately the same as the achieved bandwidth in the
first fidelity experiment. More importantly the simulation
results are very close to the results observed in the actual
GNU Radio/USRP II.
 In the final fidelity experiment we set up three traffic
flows between three nodes. One link had a bi-directional
traffic flow and the other two links had a uni-directional
traffic flow. For this experiment we measured the
maximum and minimum flow rates achieved in the network.
While the link which had the greatest flow throughput and
the least flow throughput varied from run to run, the overall
behavior remained the same: one link had a dominant
throughput and the remaining links suffered. Figure 8 shows
that the throughput of the flows increased until reaching a
maximum with a desired throughput of 20kbps per flow
then dropped off quickly. This is the result of collision
caused by the competition for the channel in the presence of

the previously mentioned delays in sensing the carrier. More
importantly, it can be observed that the simulation results
match fairly well the results obtained from the GNU
Radio/USRPII radios, validating our approach where
various delays between functional blocks need to be taken
into account and faithfully represented.

4.3. Scalability

Scaling an SDR network using actual devices can be both
costly and time consuming. Such networks are difficult to
maintain and even more difficult to perform controlled
experiments on. Therefore, a simulation framework as
provided by the NS-2 SDR framework is of utmost
importance in understanding the behavior of these networks
at greater scales than easily achievable with actual SDR
devices.
 The importance of a scalable framework is even more
poignant in the case of an SDR network model, due to the
extra-detailed modeling of various delays occurring in an
SDR radio, as well as the re-configurability requirements for
cognitive functions. Therefore, we have to apply several
techniques aimed at speeding up the model at large scales.
First, we created a distance map of each pair of nodes and
maintained a sorted list of node distances from each nodes
perspective. While this was not a new concept, we made
several improvements by using hash tables and exploiting
redundancies in calculating distances between nodes.
Second, we took advantage of the fact that the NS-2
simulator updates the node movement information in a bulk
operation, and we only sorted the distance table once upon
node creation or periodically when all node positions were
updated in a particular bulk operation.
 In our experiments we created a single subnet within a
200 meter radius with fully connected radios and constant
bit rate (CBR) traffic between all pairs of nodes. Figure 9

Figure 9 Number of simulated nodes vs. wall clock
execution time for a GNU Radio Model simulation

Figure 10 Number of simulated nodes vs. wall clock
execution time for a GNU Radio Model simulation
with optimization for large scenarios

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

320

shows the relationship between the number of simulation
nodes and the wall clock execution time of an 1800 second
simulation. It is important to note that the fully connected
traffic graph meant that the traffic grows as a square of the
number of nodes therefore we see a quadratic growth in the
simulation time.
 The optimization results can be seen in Figure 10. For
this experiment we deployed the nodes in a sparse network,
where the spacing between nodes grows in proportion to
their number. The optimized channel thus forwards packets
only to nodes which are within interference range of the
transmitting nodes. Each test performed 600 seconds of
simulation time with a full mesh of CBR traffic flows
transmitting one packet every ten seconds. Even with this
extremely heavy network load, we see that the simulator
performed large scale tests in nearly linear time with
relation to the number of nodes.
 Although the execution of large scale simulation
scenarios may shows a simulation speed that may be smaller
than real time, this does not invalidate our objective of
executing real application and cognitive algorithms tuning
the behavior of each modeled SDR device in real time. This
is due to the Time Synch functionality [11], that allows the
execution of entire virtual machines, including the software
deployed on them, at a speed closely synchronized to that of
a simulator, where VAN SITL technology is employed.

5. CONCLUSIONS

This paper presented the NS-2 SDR Framework, a
framework written for the NS-2 simulator designed to
facilitate the modeling of the networks consisting of SDR
devices. Salient features of our framework are a detailed and
explicit modeling of time delays in the most important
processes encountered in a software defined radio, including
but not limited to channel coding, digital transformations,
carrier sense, as well as communication and buffering
delays encountered between the software and hardware
domains. Additionally, a reconfiguration framework was
provided, an essential component of any SDR radio capable
of providing runtime adaptation in a cognitive manner.
 To best of our knowledge, this is the first framework
that successfully provided both these capabilities, promoting

further development and validation of cognitive strategies,
in a high fidelity environment.
10. REFERENCES

[1] P. K. Biswas, C. Serban, A. Poylisher, J. Lee, S. Mau, R.

Chadha, and C. J. Chiang, “An Integrated testbed for Virtual
Ad Hoc Networks,” in Proc. TRIDENTCOM 2009.

[2] A. Poylisher, C. Serban, J. Lee, T. C. Lu, R. Chadha, and
C.Y. J. Chiang. A virtual ad hoc network testbed. In
International Journal of Communication Networks and
Distributed Systems,Vol. X, 2010.

[3] C. Serban, A. Poylisher,and C. Y. J. Chiang, “Virtual Ad hoc
Network Testbeds for Network-aware Applications,” in Proc.
IEEE/IFIP Network Operations and Management Symposium
(NOMS 2010), April 2010. [1] Y.M. Gottlieb, C.J.
Chiang, R. Chadha, H. Ohel, K. Moeltner, S. Ali, “Policy-
controlled dynamic spectrum access in multitiered mobile
networks,” in IEEE Military Communications Conference
(MILCOM), San Jose, CA USA, Oct. 2010.

[4] A. Hocquenghem, "Codes correcteurs d'erreurs" (in French),
in Chiffres, Paris, September 1959.

[5] R. Bose, D. Ray-Chaudhuri, "On A Class of Error Correcting
Binary Group Codes", in Information and Control 3, March
1960

[6] A. Viterbi, "Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm". in IEEE
Transactions on Information Theory 13, April 1967

[7] T. Clausen, P. Jacquet, (editors,) “Optimized Link State
Routing Protocol (OLSR)", in Network Working Group
Request for Comments RFC, October, 2003

[8] F. Ge, C. Chiang, Y. Gottlieb, & R. Chadha, “GNU Radio-
based digital communications: computational analysis of a
GMSK transceiver,” in IEEE Global Communications
Conference (GLOBECOM,) 2011.

[9] GNU Radio Project Page, available at
http://gnuradio.org/redmine/projects/gnuradio/wiki , last
visited July 2012

[10] C. Serban, F. Ge J.C. Chiang, R. Chadha, K. Moeltner, “A
practical platform for cognitive functions in tactical edge
networks.” to appear in IEEE Military Communications
Conference (MILCOM), Orlando, FL USA, Oct 29-Nov 1.
2012.

[11] F. Sultan, A. Poylisher, C. Serban, J. Lee, R. Chadha, J.C.
Chiang, K. Whittaker, “TimeSync: Virtual Time for Scalable,
High-Fidelity Hybrid Network Emulation.” to appear in IEEE
Military Communications Conference (MILCOM), Orlando,
FL USA, Oct 29-Nov 1. 2012.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

321

